Electric Chair Automatic Navigation with Spoken Commands, Laser Range Finders and Obstacle Avoidance

Adalberto Llarena, Ph.D

adalarena@aol.com
Summary

• Introduction
• Project Goals
• Time Schedule
• Current Research
• Next Activities
Introduction

Adalberto Hernandez Llarena

1985 – First programming experiences. Sigma Commodore 64.
1989 – Professor of Computing Lectures, ENP8 UNAM (High-School, at the age of 18).
1992 – Supercomputing Scholarship. VAX, CRAY-YMP, SGI.
1994 – 1996 Junior Programmer at BITAL Bank
1997 – Own Company, Inter@tivos. Software Development.
2003 – Graduated as Computer Engineer, UNAM. Avg. 9.20
2003 – Start of Master Studies in Computer Engineering UNAM Biorobotics-Laboratory UNAM. Tutor: Dr. Jesus Savage.
Introduction
Adalberto Hernandez Llarena

2003 – 2005 Small-Size Robocup Team Coordination UNAM.
 (2nd Place Mexican Robotic Tournament, 2006).
2005 – Assistant Professor at Biorobotics Lab, UNAM.
 Honorific Mention.
2005 – 2007: Robocup@Home Team Coordination UNAM.
 (1st Place TMR 2005, 6th Place RCP Bremen 2006,
 3rd Place RCP Atlanta 2007)
2007 – 2012: Humanoid Robocup Team Coordination UNAM.
 (2nd – TMR’08, 3rd – TMR’09, 2nd – TMR’10,
 3rd – TMR’12, 1st – FIRA’ 12, 1st – IRC’12 in P.K.)
2011 – Assistant Professor at IIMAS, UNAM.
2012, - Ph.D in Computer Engineering. National Autonomous
 University of Mexico UNAM, Honorific Mention.
Publications

Adalberto LLarena, Boris Escalante, Luis Torres, Verónica Abad, Lauro Vázquez, Rafael Sobrevilla, Virbot@field: taking service robots to play soccer, Team description paper of Pumas-UNAM team, for the Robocup 2008 humanoid league.

ViRbot, Atlanta 2007

Real Environment
- Robot’s Internal Conditions
- Robot’s Tasks

Virtual Environment
- Sensors
- Perception
- World Model
- Goal Activation: Global Goals, Local Goals
- Planner: Global Plans, Locals Plans
- Navigator
- Pilot
- Control Algorithms
- Mobile Robot
- Virtual Robot

Hardwired solutions

Simulator
- Human/Robot Interface
- Cartographer

Knowledge Representation
- Learning
Navigation
Ph.D in SLAM
AliveBot

Autonomous Wheelchair

Adalberto Llarena

FU-Berlin’12

Freie Universität Berlin

Post-doctoral Research
Summary

• Introduction
• Project Goals
• Time Schedule
• Current Research
• Next Activities
Main Objective

• Develop an autonomous electric chair capable of navigating in indoor environments by using spoken commands.
Goals

- Build a representation of an unknown environment.
- Assign semantic “labels” regions.
- Basic action vocabulary. “please take me to the kitchen” or “go to the bathroom”.
- Plan a trajectory and avoid unexpected obstacles.
- Send messages through the Internet.
Physical Devices

Otto Bock XENO electric wheelchair

- MS Kinect Sensor for People detection.
- Joystick control. Five gears. Up to 10 Km/h.
- 270-degree SICK S300 laser range finders. (2)
- Internal encoders for motion and current heading estimation.
- CAN-Bus protocol for robust communications.
Main Challenges

• Strict Real-Time data acquisition and wheelchair control.

• Motion constrains imposed by the chair (dimensions, center of rotation, ability for turning, etc.)
Main Challenges

• Strict Real-Time data acquisition and wheelchair control.

• Motion constrains imposed by the chair (dimensions, center of rotation, ability for turning, etc.)

• Motion softness.

• Fast reaction to unexpected obstacles.

• Easy calibration & setup.

• Minimal speech training.
Summary

• Introduction
• Project Goals
• Time Schedule
• Current Research
• Next Activities
Working Plan

<table>
<thead>
<tr>
<th>Activity</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>15.Oct.12</td>
</tr>
<tr>
<td>Analysis & Design of the input/output interface with the electric wheelchair.</td>
<td>30.Nov.12</td>
</tr>
<tr>
<td>First control tests between the computer and the wheelchair.</td>
<td>31.Dec.12</td>
</tr>
<tr>
<td>Laser sensor data acquisition.</td>
<td></td>
</tr>
<tr>
<td>Development of the SLAM algorithms.</td>
<td>31.Jan.13</td>
</tr>
<tr>
<td>Automatic path calculation and differential drive control.</td>
<td>28.Feb.13</td>
</tr>
<tr>
<td>Reactive obstacle avoidance.</td>
<td>31.Mar.13</td>
</tr>
<tr>
<td>Speech recognition system training</td>
<td>31.May.13</td>
</tr>
<tr>
<td>First tests of the complete system in laboratory.</td>
<td>30.Jun.13</td>
</tr>
<tr>
<td>Tests in a real scenario.</td>
<td>31.Aug.13</td>
</tr>
<tr>
<td>Final documentation.</td>
<td>30.Sep.13</td>
</tr>
</tbody>
</table>
Robocup@home

• Navigate in dynamic environments
• Fast & easy calibration & setup
• Object recognition
• Object manipulation
• Detection and recognition of humans
• Natural human-robot interaction
• Speech recognition
• Gesture recognition
• Robot applications
• Ambient intelligence (e.g. communicating with surrounding devices like phones)
Robocup@home

• Up to two robots per team
• Qualification materials
 – Qualification video (one successful test)
 – Team’s website
 – Team description paper TDP
• Dates (2012):
 – Feb. 3, 2012 | Pre-registration
 – Feb 28, 2012 | Qualification material
 – Mar 15, 2012 | Notification of Qualification
 – Jun, 24-30, 2013. Competition
Summary

• Introduction
• Project Goals
• Time Schedule
• Current Research
• Next Activities
Current Research

1) Communicating with the Wheelchair

- CAN-BUS
- SICK Laser
- Odometers
- Front Wheel’s Heading
- Kinect
Current Research

1) Communicating with the Wheelchair
 - CAN-BUS
 - SICK Laser
 - Odometers
 - Front Wheel’s Heading
 - Kinect
Current Research

2) Building a Map of the Environment
Bienvenido a Sher-Plan, la herramienta interactiva de Sherwin-Williams donde podrá diseñar su tienda a la medida de sus posibilidades, sin requerir de costosas herramientas de diseño CAD.
Current Research

3) Estimating localization parameters
Real-time Sensor Simulation
SLAM - Steps

1) Autonomous navigation
2) Build a map of the environment
3) Get localized in that environment
Important Issues

Robot Constrains (HW)
Dimensions
Maneuverability (Kinematics & Dynamics)
Perception (sensors)
Energy
Safety
Important Issues

Development Schema (SW)
 Device access (OS drivers) – Physical Layer
 Communication protocols (CAN-bus, rs232, Tcp/UDP sockets) – Link Layer
 Device drivers/controllers (laser, kinect, wheelchair) – Data Layer
 Middleware – Communications - Fault tolerant
 Task manager (sequencer)
 Task planner
Summary

• Introduction
• Project Goals
• Time Schedule
• Current Research
• Next Activities
Parallel Activities

1) Gathering of source codes (most recent versions)
2) Documentation of Processes & Protocols
3) Architecture Evaluation
4) Middleware Selection
Next Activities

1) Wheelchair Controller Design
2) Architecture Evaluation
3) Middleware Selection
4) Implementation of New Modules
Next Activities

Wheelchair Controller

- Can-Bus protocol understanding
- Sick S300
 - Packet parsing
 - Ignore blocked data-points
 - Step filter
- Odometry µC access
 - Packet parsing
- Steering Angle µC
 - Packet parsing
Simplified Schema

Main Controller

Middleware

Wheelchair
Simplified Schema

Architecture Evaluation

Main Controller

Middleware

Driver

Physical Device

Driver

Physical Device
Middleware Selection

Orocos Toolchain as Middleware
Electric Chair Automatic Navigation with Spoken Commands, Laser Range Finders and Obstacle Avoidance

Adalberto Llarena, Ph.D

adallarena@aol.com